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variability of the probability of a given event defined in terms
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than two independent observations for each subject. Estimators
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ing the hypothesis that the average probability is the same for
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1.Introduction

A practical problem in which the results of the present

paper may be useful is as follows. The experimenter is inter-

ested in a certain event, say A , defined in terms of behavior

of the subject (e.g., choice of one of the two displayed stimuli

which are to be discriminated).

The experimenter needs the probability P s(A) , where s

denotes the subject. To estimate this probability one should

make a series of independent observations on the same subject,

a procedure often not feasible for reasons such as memory or

learning effects, or simply subject's boredom.

In such cases, one often makes the assumption that P s(A)

does not depend on s , and proceeds to estimate P(A) using

data for large groups of subjects, each tested once or twice.

The crucial issue in such a procedure is the inter-subject

variability of P (A) . The present paper gives, among others,

methods of assessing this variability, and testing the hypothesis

of equality of average Ps (A) in two groups of subjects, under

the constraint that at most two observations are taken for each

subject. In a sense this paper constitutes a statistical counter-

part of an earlier paper written by one of the authors (see Barto-

szyriski (1978)).

2. The General Scheme

We shall consider the following situation. Let G n n)

be a system of independent experiments. Assume that each experiment
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may lead to a "success" or to a "failure", with (unknown)

probability of success in experiment Gi equal pi . Our

problem will be to construct methods of inference about pro-

babilities pi in situations, when for some reasons one is

allowed to make at most two independent observations of each

experiment G.1

Obviously, not much may be inferred about the individual

values pi ; we shall therefore construct estimators of "moment-

like" quantities

- 1 n 21 2 2P = n Pi n Pi - p ii =1i=l ni=l

Let Xi be 1 or 0 depending on whether the first

trial in experiment G. leads to success or failure, and

similarly, let Yi be the random variable coding the outcome

of the second trial on G.1

We assume that different experiments and different trials on

the same experiment are independent; moreover,

P(Xi 1) P(Yi = = Pi i = 1....n (2)

Denote

Eij = XiYj (3)

and put

U = Yi

i X , V , (4)n n i
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n

L = (U + V) , Z = Z - UV (5)
i=l

The following proposition is an improvement of the similar

proposition proved by Bartoszyfiski (1971):

PROPOSITION 1. The random variables L and W are unbiased

estimates of f and a2 respectively. Moreover, Var L 1/8n

Var W < 3/4n and Var(W 102 = 0) 1/16n .

Proof: By (2) , we have EX i = EY i  pi Consequently,

n

EU = EV = I I pi =- and also EL = p. Since
n i=l

E.i i = EXiY i = EXiEYi  p. , we get, by independence of U and V

EW i n 2 1 2 2 2

i=l n i=l i
(6)

which proves the unbiasedness.

Next, Var X = Var Y =p(l - pi) < 1/4 , and using the

assumption of independence, we can write

1 n
Var U = Var V - 1 Var Xi 5 1/4n. Since U and V are

n2 i=l

independent, we have

Var L =4(Var U + Var V) 5 1/8n . (7)

IiII I i , , , ... ... ........
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It remains to evaluate the variance of W . We may write

! n

Var W = Var (I I &.i - UV)
i=l

n 2 n
n Var .. + Var UV - -Cov( UV

n 2i=l 1i n

n n n n
SVar~ + -Var .- Co ( .2 ij 3 Cov( ii' - mn i=l n i,j=l n i=l k,m

I n n

2 Var ii + __4 1 Cov ( ij' Ekm )

n iln 4  i, j,k,m=l

2- n
23 Cov (ii, km

n ik,m12l

Taking into account the fact that Coy (E ij,km) is zero

unless i = k and/or j = m , we obtain after some transformations

the formula

Var W 4(n i)2 nCo
n i=l

4(n ) C
- 4 Coy (i ij)

n i=l j4i

+ -ICoy nij
4 1 o i 1

n
+ n

C4 L 1 X coy (riU 't). (9)
n iiji k~i j i

kpJ

We have, if different letters stand for different indices,
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Coy (ii. Eii) = P2 ( - Pi 2 (10)

Coy (ii i) = pp 2(1 - p.) , (11)

Coy (ij. &ij) = pip (i - pip) , (12)

Coy (F ij, ik) = PjPkpip ( - pi) (13)

Thus, all terms in (9) are nonnegative, and all are bounded

from above by 1/4 . We may therefore write, omitting the second

sum in (9)

Var W _ (n 2i) n + 1 n(n - 1) 2 n(n - 1)(n -2)
4 4 4 4 4" 4n n n

+  1 +  (14)
4n 4n2  2n

which gives the asserted bound.

Finally, if a2 = 0 , then all pi are equal. Let their

common value be p. Substituting (10) - (13) to (9), we obtain,

after reduction

2=0) n - 1 2 2
Var (Wic 0 2  p (1 - p) . (15)

n

The maximum is attained at p = and is asymptotically equal

to 1/16n , which completes the proof.

Thus, the bound for the conditional variance Var(WIo 2 = 0)

is sharp. One may conjecture that the general bound for Var W

can be improved, even considerably. However, simple numerical data

show that the maximum under constraint o 2 = 0 is not the overall.



maximum. Indeed, if n = 6 and p1 = "'" = p6 = 0.5 (hence

2 -3
0 0) , the variance of W equals 1/16n 8.68 • 10 . If

2
P1  0.45 P2= = P 5 = 0.5 , P6 = 0.55 (hence a

4 -38.3 • 10- ) variance of W is 8.69 • 10-  If P1  p 2
P3  0.45 , P4 = P5 = P6 = 0.55 (hence 02 = 2.5 • 10- 3 )

variance of W is 8.71 • 10-  . Similarly, if pl = P2 =

2
P3 

= 0.4 F P4 = P 6  0.6 (hence a = 0.01), we have

Var W = 8.8 • 10 - , etc.

To make Proposition 1 useful for practical applications,

we shall complement it by specifying conditions under which

the distribution of W is asymptotically normal

For that purpose, we assume that the system G is an

beginning of a potentially infinite sequence of independent ex-

periments G1 , G2.. . . .  In sho't, we assume that n may be

chosen arbitrarily large.

We shall prove

PROPOSITIOH 2. If

i U - p) = O (16)

then the random variable W defined by (5) is asymptotically

normal.

Proof. Since p2(1 - p) 2p(l - pi) we have also

Pi l pi =0 
(17)

and it follows that all three random variabl~s U. V and Z
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defined by (4) and (5) are asymptotically normal (see e.g.

Fisz 1961).

We shall prove that the joint distribution of (Z,UV)

is asymptotically normal. Consider a linear combination

aZ + bU + cV (18)

which may be written as

n n
1 i [aX.Y. + bX. + cY] = 1 Y n (19)
n= i I 1 n i

Each of the random variables n . assumes the values 0,b,c,

and a + b + c with probabilities respectively equal to

2 2
(1 - pi )  Pi(l - pi) , Pi(l - pi ) and p Consequently

Er. = (a + b + cp 2 + (b + c)p.(l - pi) (20)En i i = a+b+cP

and also, after some reductions,

2 2 2 2 2 2
Var ni=a p2(l-p )+ 2a(b+c)p.(l-pi) + (b +c )pi(l-P) (21)

Since the random variables ni are bounded, it suffices to show

that Var ni  diverges for any a,b,c which do not vanish

simultaneously. If a / 0 , this is true in view of (16), while

if a = 0 , we must have b2 + c2 > 0 , and divergence is ensured

by (17).

Using now theorem from Rao (1965), p. 319-340, we conclude

that the random variable W is asymptotically normal, with mean

a2 and variance bounded by 3/4n
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3. Comparison of systems

Let us now consider two disjoint (hence independent) systems

G and G(2) , consisting respectively of nI and n2  exper-

iments. Let n = n1 + n 2 and let G = GM u G ( 2 ) be the com-

bined system.

In the sequel, we shall denote by (i) and 1I(2) the

summations extended over the indices in GMI) and G(2 ) respect-

ively.

Let

(( 1 (1)p (2) 1 (2 )p (22)
n. n 2  1

2 1 (1) (pi p () 2 2 1 (2 )(P (2) 2a-~ P -p, 02 :n 2 [ 1P - p ) (23)

2

and let p and 2 have the same meaning as before.

Under the constraints of the preceding section, namely that

one can have at most two independent trials on each experiment,

we shall construct a test for the hypothesis that D(l) = -(2)

Let W , W1  and W be the random variables defined by (5)

for systems G, G(1) and G(2)

We shall prove

PROPOSITION 3. The random variable

nI  n 2 W
K=W- W1 - -W2  (24)

satisfies the condition EK _ 0 , with EK = 0 if, and only if

6I
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(1 -(2)fn 
n

p p( . Moreover if n 2 then for any nI, n2

2nln 2

we have Var K !5 cn  n 3

Proof. Let us write

2 -2
o n

+1) + (1) + 2 + - (2)P - (2) + (2) )

(pi p n

p(P 1))2 + (2) (Pi p (2)

n i n

4- (p -) 2+- _ p-(1) 2,,(2) )2 (25)

n n

n 2 nl [(i) _ 2 n2  -,(2) -2
1 = 2 + 2 + n

By Proposition 1 the random 
variables W , w1  and W2  are

22 respectively- Conse-

unbiased estimators of 02 2 and 2

quently,

nn (1) _ ) + _ )- >- (26)
-n n n

with equality holding if and only if p M= p42) since then

=(l _ 
-(2)

To evaluate the variance 
of K , let us write

1 i 1 2 J jk 
(27)

W - uv =i- n 
(
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and similar formulas hold for W1  and W2

Using (27) we may write

C -L 1k 1 }(2) (28)n _ n (i + n_ (2 jk -n j k
K =n I j~k j 2 jk

Consequently, we obtain

2 1 (1() k I j) (1))

n Var K = - Cov 
(29)

nI

1 (2) (2) k.
+ -- Cov ( )jkov

n2 ~ jk' jk 2jk' 2k
n 2

n

2 Coy (1M) -_ 2 Cov q (2)% [%k ,
-nn I  

jk' k nn 2  
jk' j

since 1 kand 1 (2) C are independent.

By taking into account only 
those covariances Coy (jk' rm)

which are not zero, we arrive, 
after considerable algebra, 

at the

formula

n 2 n 2

2 Var K 2 X() pi(2 p2 ) + (-) (2) p( P 2

nn2 
i i

S 2 () (1) pjp 2 (l -Pi
)

+ 4:) 
(30)

(2) (2)(

+ 4 (- -) 7. pjp 1 (l -i

2 i jfi

4n2 ,(l) (2)pp 2 (_ p)

n2 n 1  1
(cant.)
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nn2 n i(2) () PJP(1 -pi )

n2

n_ j~ pipj(1 - pipi)

n, 2

+ _ i(1) j (2) pip(1- P1  P) + n j(2) J(1) pP _ piP

n 2 2 ((i) [ (1) (1)
1 1 i jPi k~i jPkP -

koj

+ n 2 [(2) ( (2) y (2)
n 2 ( 2 i j i k3i pjPkPi(i - pi )

k4j

+ 2{ PjPkPi (  Pi )

n i j/i kqi
k/j

- (i) x (1) (i) pjPkPi(1 _ j(2) y (2) (2) pj PkPi(1Pi) .

i jei ki i ji k4i
k/j k/j

Using now the estimates p2 ( I - p2 P ,p (I - pi) 4/27

pipj (i - pipj) _< j , and pjPkPi(1 - p ) < , we may write, omitting

negative terms in (30):
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2 22 n2 nl__
Var K +_ 2

1 4n2n 2

4 n2 2 n 1 212  2

i n 2  2 1- n 2+ 4 (n-) n l (n I -l) + 4(-) n 2 (n 2 - )

1~ n 1 2

+ nl- n 2 ) 2 n l (n I -i)(n 1 -2)
4n 2  4n 2  4 1 _

()nl n 2 (n 2 - 1)(n 2 - 2)

1 2
+--L [3nl(n, - 1)n 2 + 3n 2 (n 2 - l)n I ] (31)

n

Denoting ni/n = x , n2/n = 1 - x , we obtain finally from

(31):

~1 1xl-x)+ 2 1 16 x2 2

Var K n2x(1 -x)+ {4 + 27 + ( -X) 2 }

n

+ X)(2 +-x2  }
n3 4x 4(l - x)

3
which yields the asserted asymptotic bound 2n1 n2/n , valid for

all sufficiently large n

Maximizing with respect to x we obtain
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COROLLARY. As n + , we have regardless of n1 and n 2

Var K ! an ~ 1/2n (32)

Similarly as in the preceding section, we have

PROPOSITION 4 Under condition (16), the asymptotic (as

n D w ) distribution of K is normal.

The proof is analogous to the proof of Proposition 2 and

will be omitted.

Propositions 3 and 4 provide means of testing the hypothesis

that -(1) -(2): one may take the random variable K as the

test variable, and use one-sided critical region, large values

suggesting rejection.

4. Applications

A typical application, for assessing the inter-subject varia-

bility of choice probabilities, has already been described in the

Introduction. Somewhat more generally, one may consider the follow-

ing situation.

Suppose that the subjects are trained to perform some classi-

fication task, e.g., classify some objects into binary categories.

Taking one of these categories as "success", and classifying the

same set of objects twice by the same group of subjects, one obtains

a variety of possibilities of applying the results of this paper.

Let Pij be the probability that i-th subject will classify j-th
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object to the chosen category, and let Xij , Yij be 0 or 1

depending on how the j-th object was classified by the i-th

subject on the first and second trial.

Fixing i , and taking a large set of objects, one can estimate

the variability of pij under changes of j ; if this variability

is large, one may want to identify objects which are easier, or

more difficult, to classify.

On the other hand, fixing j , and varying i , one can test

whether there exists sufficient homogeneity among classifying sub-

jects; one can also test the hypothesis, using Propositions 3 and

4, that the two groups of subjects are equally well trained, etc.

If there are more than two categories in the classification,

one can apply the same technique by fixing one category. However,

if one can ensure not two, but four independent classifications

for each person, then one can define "success" as the event "iden-

tical classifications on two successive trials".

Letting pijk , k = 1,2,... denote the probability that i-th

subject will classify j-th object into k-th category, the proba-

bility of success in this case is

2
Pijk = vij

k

Again, one can test variability of v under changes of sub-

jects and objects.

Finally, observe that the above ways of testing the quality

of classification by human classifiers is independent of the con-

cept of "true category" of the object, and applies equally well
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to classification schemes in which such concept makes no sense

(e.g. grading students' papers, etc.).
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